Substrate Arrays of Iridium Oxide Microelectrodes for in Vitro Neuronal Interfacing
نویسندگان
چکیده
The design of novel bidirectional interfaces for in vivo and in vitro nervous systems is an important step towards future functional neuroprosthetics. Small electrodes, structures and devices are necessary to achieve high-resolution and target-selectivity during stimulation and recording of neuronal networks, while significant charge transfer and large signal-to-noise ratio are required for accurate time resolution. In addition, the physical properties of the interface should remain stable across time, especially when chronic in vivo applications or in vitro long-term studies are considered, unless a procedure to actively compensate for degradation is provided. In this short report, we describe the use and fabrication of arrays of 120 planar microelectrodes (MEAs) of sputtered Iridium Oxide (IrOx). The effective surface area of individual microelectrodes is significantly increased using electrochemical activation, a procedure that may also be employed to restore the properties of the electrodes as required. The electrode activation results in a very low interface impedance, especially in the lower frequency domain, which was characterized by impedance spectroscopy. The increase in the roughness of the microelectrodes surface was imaged using digital holographic microscopy and electron microscopy. Aging of the activated electrodes was also investigated, comparing storage in saline with storage in air. Demonstration of concept was achieved by recording multiple single-unit spike activity in acute brain slice preparations of rat neocortex. Data suggests that extracellular recording of action potentials can be achieved with planar IrOx MEAs with good signal-to-noise ratios.
منابع مشابه
Iridium Oxide Microelectrode Arrays for In Vitro Stimulation of Individual Rat Neurons from Dissociated Cultures
We present the first in vitro extracellular stimulation of individual neurons from dissociated cultures with iridium oxide (IrO(x)) electrodes. Microelectrode arrays with sputtered IrO(x) films (SIROF) were developed for electrophysiological investigations with electrogenic cells. The microelectrodes were characterized with scanning electron and atomic force microscopy, revealing rough and poro...
متن کاملProtein adsorption on materials for recording sites on implantable microelectrodes.
Implantable microelectrodes have the potential to become part of neural prostheses to restore lost nerve function after nerve damage. The initial adsorption of proteins to materials for implantable microelectrodes is an important factor in determining the longevity and stability of the implant. Once an implant is in the body, protein adsorption takes place almost instantly before the cells reac...
متن کاملCarbon fiber on polyimide ultra-microelectrodes.
OBJECTIVE Most preparations for making neural recordings degrade over time and eventually fail due to insertion trauma and reactive tissue response. The magnitudes of these responses are thought to be related to the electrode size (specifically, the cross-sectional area), the relative stiffness of the electrode, and the degree of tissue tolerance for the material. Flexible carbon fiber ultra-mi...
متن کاملToward a comparison of microelectrodes for acute and chronic recordings.
Several variations of microelectrode arrays are used to record and stimulate intracortical neuronal activity. Bypassing the immune response to maintain a stable recording interface remains a challenge. Companies and researchers are continuously altering the material compositions and geometries of the arrays in order to discover a combination that allows for a chronic and stable electrode-tissue...
متن کاملExtracellular pH monitoring for use in closed-loop vagus nerve stimulation.
OBJECTIVE Vagal nerve stimulation (VNS) has shown potential benefits for obesity treatment; however, current devices lack physiological feedback, which limit their efficacy. Changes in extracellular pH (pHe) have shown to be correlated with neural activity, but have traditionally been measured with glass microelectrodes, which limit their in vivo applicability. APPROACH Iridium oxide has prev...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Frontiers in Neuroengineering
دوره 2 شماره
صفحات -
تاریخ انتشار 2009